网络化学习中学习者认知负荷的评估方法*

 

李金波1.2

 

1.浙江省教育考试院,浙江杭州310012

2.杭州师范大学教育科学学院,浙江杭州310036

 

【摘要】本研究通过设计模拟的网络化学习实验,探讨网络化学习过程中认知负荷的评估方法。结果显示,心理努力、任务主观难度、注视时间、注视次数、主任务反应时、主任务正确率等评估指标对认知负荷变化敏感;采用多维综合评估模型对认知负荷进行测量总体上比采用单一评估指标的测量更为有效。研究表明,BP网络和自组织神经网络两种神经网络模型对认知负荷的测量结果优于传统的因素分析方法。

【关键词】网络化学习;认知负荷;评估;建模;神经网络

【中图分类号】B841

【文献标识码】A

【文章编号】1007-2179200904-0090-04

【作者简介】李金波,博士,副研究员,浙江省教育考试院,杭州师范大学硕士生导师(Ljb@zjzk.cn)

*基金项目:本文系全国教育科学“十一五”规划教育部重点课题“数字化学习中认知负荷的综合评估与变化预测研究”(DCA080141)成果之一。

 

Method for Assessment of Cognitive Load in the

 E-learning Environment

 

Li Jinbo1.2

 

(1.Office of Education Examination Zhejiang, Hangzhou, 310012

2.School of Education, Hangzhou Normal University, Hangzhou, 310036

 

Abstract: Through a simulated E-learning experiment designed to find the best methods to assess cognitive load in the E-learning environment, we found that six indices prove to show sensitivity to changes in cognitive load: mental efforts, perceived task difficulty, duration of fixation, the number of fixation, the response time and correct rate in the primary task.  In addition, it is more efficient to assess the load based on the multidimensional synthetic assessment, rather than single assessment index. Two ANN models, namely, BP neural network and self-organizing feature map, show a better result in measuring cognitive load than the traditional technique of factor analysis.

Key words:e-learning cognitive load

暂无评论
评论
昵称:
内容: